
Electronic Circuit Assembly

The power of technology is that there are many different tools that can be used together to
create awesome results. In the context of electronic circuit assembly, the concepts of computer
science, programming, electrical engineering, design, hardware, and software all come together
to create incredible projects that can do powerful tasks. There are many layers that can be
added to these outputs via many sensors and other external devices to increase efficiency,
accuracy, and scope of the output. These sensors and other electronic parts take in different
inputs and give us valuable output we can use in our computer programs, which will change the
output of the physical hardware.

Reference: https://en.wikipedia.org/wiki/Printed_circuit_board

A photoresistor is a resistor whose resistance varies according to the
intensity of the light that falls on it. It is a passive component, so we need to feed it to provide
the measures of the quantity of interest. This sensor may have other names, for example LDR
(light dependent resistor).

Arduino IDE, Serial Plotter, and Serial monitor: The communication between PC and Arduino
can be done through the serial monitor. Thus, we can send data and commands from the PC to
the Arduino (ex: LED intensity, number of motor turns, etc.) as well as receive data from the
Arduino through the PC (ex: light intensity, temperature, humidity).

The Arduino IDE is the place where we write computer programs that we can upload to our
physical Arduino device and the many sensors attached to it. This allows the sensors to output
and work as intended by our computer program.

The Arduino IDE has many powerful tools. For example, there are built-in open source
examples of many Arduino programs for different protoboards involving analog, digital,
communication, sensors, display, Wifi, and much more. Open source is a powerful idea in the

technology world where everyone can contribute to these projects for the betterment of
everyone.

In addition, the Arduino IDE also can help provide many libraries for you to use. These involve
many different functionalities and uses, including debugging, machine learning, and many other
complicated concepts. These libraries are authentic code written by many people that allow
other people to use it as a black box. This is powerful since libraries are used to increase
complexity of our programs and projects in an easy manner.

The serial plotter is a tool in the Arduino IDE that is beneficial for displaying data, such as
temperature, humidity, and voltage, from different sensors in a visual manner of a graph with
waveforms. The power of the serial plotter is that it allows you to see different relationships
between data in a fast way.

The serial monitor is another powerful tool in the Arduino IDE that is very helpful for monitoring
the progress of our programs and debugging our programs. This tool displays data and other
content that we tell it to display from our program code on the screen. The serial monitor is
similar to the function in many programming languages that allow the programmer to print out
test results and other content for debugging. This is used heavily in order to produce efficient
and accurate programs.

Exercise 1

We will use the serial monitor to receive information from the Arduino and print on the PC
screen (built-in LED).

The serial monitor can be accessed from the Arduino IDE. The information received from the
sensor can be displayed on the serial monitor through several commands. First, we have to set
up the serial monitor by adding the proper communication channel in the setup function of the
Arduino program. This can be done by writing Serial.begin(#) where the # represents the speed
of communication, such as 9600 bits per second. Bits are the basic representation of
information in computer science. A bit often can be defined by 1s and 0s.

Once we have set up the correct communication to the serial monitor, we can then use
Serial.print(parameter) to print to the screen any parameter we want. This is powerful to see the
outputs of the computer program and verify its accuracy.

Exercise 2

We will use the serial monitor to receive the information from the photoresist sensor and print
the read values.

1. In Tinkercad, assemble the circuit with Arduino, protoboard, photoresistor and a resistor
(2K Ohm). Remember that a photoresistor is a resistor whose resistance varies
according to the intensity of the light that falls on it. Also remember that a major purpose
of a resistor is to reduce the flow of current throughout the circuit.

2. Connect a multimeter between the resistance terminals to check the resistance variation
(in the circuit). Remember that a multimeter is powerful because it can read and display
many different data points for the user.

Reference: https://www.tinkercad.com/things/k8eBP5VeKZt-multimeter

3. Print on the serial monitor the voltage values “read” by the Arduino on the assembled
circuit. Remember that we need to initiate the proper communication channel in the
setup function of the Arduino program using Serial.begin and then use Serial.print to
print the desired values.

4. Assemble the physical circuit and print the values read by the Arduino on the serial
monitor.

Exercise 3

We will use the values read on the sensor (photoresistor) to decide when to turn on the LED
light.

1. Assemble an Arduino circuit, protoboard, resistor and LED. Remember that an LED is a
light-emitting diode that emits light when electron particles flow through it.

2. On the protoboard, mount the resistance circuit, photoresistor and connection with
Arduino.

3. Make a block program, where we turn on the LED from a certain brightness (value that
can be defined from exercise 2).

Reference: https://www.instructables.com/Light-Sensor-Photoresistor-Arduino-Tinkercad/

Note: operation of sensors

Resistance variation as a function of luminosity:

This relationship is called an indirect relationship. This means that as luminosity increases, the
resistance decreases. Note that lux is the unit of illuminance. In many graphical relationships,
we refer to the variable on the x axis(horizontal) to be the independent variable and the variable
on the y axis(vertical) to be the dependent variable.

Luminosity variation as a function of current:

Reference: https://components101.com/diodes/1-watt-led

The opposite of an indirect relationship is a direct relationship. This means that as the
independent variable increases, the dependent variable also increases.

We use this behavior of the photo resistive element to insert in the following circuit:

VA0 = (5V / (1K + LDR)) * LDR

● The lower the brightness, the greater the resistance of the LDR;

https://components101.com/diodes/1-watt-led

● The greater the resistance of the LDR, the greater the voltage at A0;
● So: the lower the brightness the higher the voltage in A0

In electrical engineering, many of these symbols are standard and used many times to note
different sensors and parts of the circuit.

Reference:
https://www.physicsclassroom.com/class/circuits/Lesson-4/Circuit-Symbols-and-Circuit-Diagram
s

Other sensors

● Temperature and humidity sensor:

The DHT11 Humidity and Temperature Sensor is a temperature and humidity
sensor that allows you to take temperature readings between 0 to 50 Celsius and
humidity between 20 to 90%, widely used for projects with Arduino

● Ultrasonic sensor:

The Ultrasonic Sensor HC-SR04 is a very common component in Arduino
projects, and allows you to take readings of distances between 2 cm and 4 meters, with
an accuracy of 3 mm. It can be used simply to measure the distance between the sensor
and an object, such as to activate microcontroller doors, to divert a robot from obstacles,
to trigger alarms, etc. In this tutorial we will teach you how to connect the HC-SR04 to
the Arduino.

● Temperature sensor:

Perform temperature measurements accurately not only in a dry environment but
also in damp and wet environments with the waterproof DS18B20 temperature sensor.
The DS18B20 temperature sensor can read accurately up to ± 0.5 ºC, and send the
information to the microcontroller using only 1 wire.

● Soil moisture sensor:

The soil moisture sensor has a visual indicator of the soil moisture level and the
health of your plant. It consists of 2 parts: a probe that comes in contact with the ground,
and a small module containing a comparator chip LM393 (datasheet), which will read the
data coming from the sensor and send it to the microcontroller, in our case, an Arduino
Uno. As an output, we have a D0 pin, which is at level 0 or 1 depending on the humidity,
and an analog output pin (A0), which makes it possible to monitor more accurately using
an analog port of the microcontroller.

● Color sensor:

Use the TCS3200 color sensor and an RGB led to easily assemble a color
recognition system with Arduino. The TCS3200 color sensor (datasheet) uses the
TCS3200 chip to detect the RGB color level (Red, Green and Blue, or Red, Green and
Blue) of the object that is placed in front of the sensor.

The TCS3200 chip has 64 photodiodes: 16 with filters for red, 16 for green, 16 for
blue and 16 without filters. These photodiodes capture the intensity of the light, filtering
the colors and generating the corresponding information on the OUT pin, which will send
the data to the microcontroller.

● Speed sensor:

The speed sensor is used to measure engine speed, pulse count and as a
positioning controller. It can be used with the most diverse controllers and boards, such
as Arduino, Raspberry Pi and PIC.

As you will continue to observe, the power of software is limited by the hardware. Software
means the instructions that a computer understands, such a program in a programming
language. There is new software being developed every single day with thousands of thousands
of lines of code. However, without hardware, much of this software cannot work or solve a
problem. Imagine you want to test a person’s heart rate in a faster and more efficient manner.
You can write all the code that you want, but the problem cannot be solved without a physical
device or hardware. There are many other examples of the important relationship between
hardware and software.

We will take a look at the relationship between an electronic circuit and the programming to
make this electronic circuit useful. Electrical Engineering is this idea of circuits, electronics, and
other such topics. Computer Science is the idea of programming and fixing errors or bugs. The
combination of Electrical Engineering and Computer Science is what we will explore.

An audible alarm (buzzer) is a device that produces sound when we
supply its positive (+) terminal with a voltage value of 5 V (HIGH). Its
activation is done using an electronic circuit identical to the one used in
the case of an LED. The buzzer is known as the hardware component
and we will assemble the component by wiring correctly. This will allow
the electricity and power to flow in a circuit that will make the buzzer or
the LED work. We will then be able to program using code the specific
way that the buzzer or the LED should work. Without both components

working correctly, we will not get the desired output. Wiring is done on a physical board based
on this idea of a completed circuit in order to allow the current to flow. Programming is done on
a computer using an Integrated Development Environment(IDE), which we can upload to the
physical device for it to work.

Exercise

In this activity, we will use the Arduino to monitor the status of two touch buttons and, based on
this information, determine whether the external LED lights flashes or remains off, as well as
whether or not the audible alarm should be activated.

Many of these principles and the way of thinking can be summarized by a state diagram and the
idea of “states.” These are useful when we have many physical components and they do
different actions based on different physical inputs based on the set of instructions that a
programmer writes. A “state” means the current condition of the program of interest. States are
powerful because we can transition between different states in order to make a program. These
states and transitions based on specific inputs can create powerful programs for us using both
software and hardware.

Reference: https://en.wikipedia.org/wiki/State_diagram#/media/File:DFAexample.svg

In this exercise, we will explore these states and transitions further, seeing that they resemble a
flow of actions, inputs, and changes, similar to a computer program. We want to achieve the
following effects on devices depending on the states of the buttons:

Left button Right button Effect
Rest Rest LED off and silent alarm
Rest Pressed LED on and alarm silent

Pressed Rest LED on and alarm silent
Pressed Pressed Flashing LED and alarm activated

The entire electronic circuit is already mounted on your protoboard, so the remaining challenge
is to prepare the program on Tinkercad. Remember the code structures seen in the previous
activities and use the blocks available in the "Control" and "Mathematics" tabs.

Tip: each row in the table above can be “translated” into IF-THEN statements.

Explanation of States/Actions into IF-THEN statements

Some example pseudocode for the IF-THEN statements is the following:

https://en.wikipedia.org/wiki/State_diagram#/media/File:DFAexample.svg

Pseudocode means code that is not directly understood by the computer. It helps human beings
to get an idea of the flow of the program. In the example above, the details of the syntax or the
grammar are not important. The flow and logic of the statements are more important. Each row
of the table can turn into an IF-THEN statement by converting the status of the right and the left
buttons being pressed or not as the conditionals in our if statements. Then, the output for each
of these potential states is whether or not the LED light is on or off. There are some other
conditions that we can write in our pseudocode, such as the light flashing instead of just being
on. The important aspect is to understand that this set of instructions is going to affect the final
output of the physical devices of the LED and the alarm.

There are helpful steps for doing the activity. It is important to understand the concepts of an
LED, resistor, basic setup of the code, and the basic setup of the physical circuit. In these steps
that follow, we will go through the important topics relating to each step.

Roadmap for reviewing topics

1. One LED circuit

The assembly is already illustrated in Tinkercad with the protoboard. Even though the class has
the assembly done already, it is important to note the concepts of a 220 ohm resistor, the LED,
and the Arduino itself. Arduino is a tool that allows people to utilize both hardware and software
components to make a working system. The physical Arduino board consists of many sensors,
wires, pins, and ports. This allows anyone to customize the setup of the circuit in order to create
more powerful programs. In this case, the board has an LED that will help complete the circuit in
order for the LED to be powered. An LED stands for “Light-Emitting Diode,” which is a way of
saying that an LED is a light source that emits light when current flows through it. In order to
complete the circuit, we also have a 220 ohm resistor, which is necessary to limit the current
and prevent too much or too little current.

2. One button circuit

After everyone has put a button on the protoboard, ask them to add one more button. In many
programs, it is important to start simple and then add complexity with more time. Buttons are
physical sensors that are either pressed or not. This is similar to a Boolean value, where a
button that is pressed has a value of True, which is equivalent to a “1” in many Arduino
programs, while a button that is not pressed has a value of False, which is equivalent to a “0” in
many Arduino programs.

3. Tinkercad: Prepare a program that makes the LED flash and check if the circuit works

A sample working program for a flashing LED light is the following:

This program is broken down into a simple algorithm. We first turn the LED on and wait one
second. Afterwards, we turn the LED off and wait one second. We then continue doing this
alternating forever to create the effect of the LED flashing. The Arduino program is broken down
into 2 main functions, which are a way of defining custom behaviors in a simple manner that can
be done again and again easily.

In the program, we first initialize a variable to hold the digital pin number of the LED that is on
the protoboard. This is important in order to actually control the LED in the later parts of the
program.

The first function we define is the setup function, which only runs one time and sets the basic
infrastructure of the program. In this case, it utilizes a built-in function called pinMode that will
now do actions that will behave as an output instead of an input. This is what we want since we
want the output of the LED to be either on or off.

The second function is where we will write the main logic of the program. This function runs
forever unless stopped by external factors. We first turn our LED light on by communicating to
the system that we want a HIGH voltage. At this point, the LED light is turned on. We now wait
1000 milliseconds, which is equal to 1 second. Afterwards, we now turn our LED light off by
communicating to the system that we want a LOW voltage. We then wait 1 more second before
repeating this behavior forever in a loop. These sequences of steps will make it seem like the
LED is flashing.

After this point, we remember how to upload a Tinkercad program onto Arduino, passing
through the IDE. This will ensure the physical device will do the set of instructions we passed to
the device.

Reference: https://www.ladyada.net/learn/arduino/lesson3.html

4. Swap the LED for the buzzer

Quickly discuss that the operation of the buzzer is identical, exchanging the visual (luminous)
effect for a sound. There are many times where similar procedures can define many different
programs through many similarities. In this case, the behavior of the buzzer is similar to the
behavior of the LED since they are getting similar set of instructions for different devices. In
computer science, there is a very famous idea of “reductions,” which simplify and relate a known
problem to a different problem that can be solved via similar methods. In other words, knowing
how to solve the problem of the LED via the same program we wrote gives us a way to solve
the problem of the buzzer since the LED problem reduces to the buzzer problem. Some
reductions cannot be solved easily and efficiently. There is extensive computer science research
on some problems that are just impossible.

https://www.ladyada.net/learn/arduino/lesson3.html

Reference: http://www.ozeki.hu/p_2977-how-to-use-a-buzzer-in-arduino.html

5. Think about how to adapt the program so that the LED lights (or flashes) only when one
of the buttons is pressed.

The variation of the program to only allow the LED to flash when one button is pressed
can be done through the sequence of observations that follow:

- Highlight the blocks:
* Read digital pin.
* If, then ... another / repeat while. (If there is time, show the two ways to
implement the program, drawing attention to the fact that there is more
than one way to solve the problem).
* Equality test (=).
* For more elaborate tests, with multiple conditions, there is the AND / OR
function block.

6. Challenge of making the program with two buttons, LED and buzzer

To make it easier, we will take a complete assembly of the circuit in Tinkercad (publicly open) so
that the class can copy and test the program. This idea of using code that is already written is
actually popular in larger programs. The reason for this practice is that it is not efficient and easy

http://www.ozeki.hu/p_2977-how-to-use-a-buzzer-in-arduino.html

to code each specific part of a large program. Therefore, there are many “libraries” that people
use to build complicated programs based on certain features that are common and open for
everyone to use freely. “Libraries” are pieces of freely available code that people can take
advantage of in order to build more complicated code for different systems and programs.

